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Abstract-Super-resolution (SR) restoration aims to solve the problem: given a set of observed image(s), estimate an 
image at a higher resolution than is present in any of the individual images. In this paper we address the area of 
Super-Resolution (SR) imaging suggesting parallel computation in process of super resolution image reconstruction. 
This involvement outlines a method for extrapolating a signal beyond a limited number of known samples. The known 
signal samples are approximated by a set of basis functions, which are defined over an area covering known as well 
as unknown, samples. Minimizing a proper inaccuracy criterion and successively selecting the most dominant basis 
functions can obtain a non band-limited signal extrapolation. Extrapolation can fruitfully be used for finding a high 
resolution image using a low resolution image(s) and can defeat the inherent resolution constraint of the imaging 
system and perk up the performance of most digital image processing applications. This has driven the research area 
of super resolution imaging to develop more multifaceted algorithms that increase the resolution of images with 
enhanced conformity. One approach that can be used to increase the execution pace of these complex algorithms is 
to implement the algorithms on a parallel supercomputer. In this paper we concentrate on the parallel implementation 
of the SR algorithm on the MasPar MP-1, a massively parallel SIMD computer We present a parallel algorithm, which 

addresses this problem, and present consequences which illustrate real-time performance on 1024 x 1024 images. 
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1. Introduction 
 

Extending a signal beyond a limited number of 

known samples is commonly referred to as 

signal extrapolation. Extrapolation of the 
spectrum of an object beyond the diffraction 

limit of the imaging system is called super-

resolution. Super-resolution aims 

reconstructing frequency components, which 

lie above the cutoff frequency of the imaging 

system. The spatial resolution that represents 

the number of pixels per unit area in an image 

is the principal factor in determining the 

quality of an image. In image and video 

communication, signal extrapolation is an 

important issue in various applications. The 
problem of concealing corrupted image data, 

for example, can be seen as an extrapolation of 

the surrounding available image data into the 

missing area. Approaches for signal 

extrapolation by spectral analysis are known 

from digital signal processing. The observed 

time-limited signal can be modeled as a 

multiplication of the unknown signal by a 

time-limited binary window function. In the 

frequency domain, the convolution of the 

unknown signal spectrum with the window 

spectrum leads to a blurred and spread 

spectrum of the observed signal. Our objective 

is to suggest a parallel algorithm to eliminate 
the influence of the known window spectrum 

by spectral analysis, thus extrapolating the 

signal beyond the known samples. Several 

iterative approaches are known for Fourier 

based spectral analysis. The spectrum of the 

observed windowed signal is first limited to 

the known band and then transformed to the 

time domain, yielding a signal, which is 

extrapolated beyond the known samples. Band 

limitation, however, also alters the samples 

within the time window. After replacing the 
altered samples by the known window-internal 

samples, the signal is transformed again into 

the frequency domain, where band limitation is 

enforced. The extrapolation is obtained by 

iterating this procedure. In spectral 

components are additionally eliminated which 

are below an adaptive threshold. However, 

because of the band limitation the signal 

decays rapidly in the time domain beyond the 

known samples in the extrapolated area. 
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Therefore the approach is not suitable for 

applications where the emphasis is placed on 

extrapolation into larger areas. 

In recent years there has been a tremendous 

increase in the demand for digital imagery with 

high resolution. Applications include consumer 
electronics (Kodak’s Photo-CD, HDTV, and 

Sega’s CD-ROM video game), medical 

imaging, video-conferencing, scientific 

visualization, and multimedia. High Resolution 

(HR) means that pixel density within an image 

is high, and therefore an HR image can offer 

more details that may be critical in various 

applications. This has driven the research area 

of Superresolution (SR) imaging to develop 

algorithms and architectures that improves 

resolution of images with better fidelity. 

Unfortunately, these algorithms suffer from 
increased execution times. This has driven the 

research area of super resolution imaging to 

develop algorithms and architectures that 

increase the resolution of images with better 

fidelity. Unfortunately, these algorithms suffer 

from increased execution times. 

In this paper we address the parallel 

implementation of the super resolution 

algorithm which is based on extrapolation on 

the MasPar MP-I, a massively parallel 

supercomputer. We chose to implement the 
algorithm on the MP-1 for several reasons. 

First, super resolution has become popular now 

a days and is used in a variety of applications. 

Finally, the MP-1 is fast enough to process 

image sequences in real-time, and thus can 

serve as both a prototype and production 

machine for the development of super 

resolution algorithms. We make known that 

the greatest difficulty lies not with the super 

resolution algorithm per se, but with the 

decomposition of input image into the smaller 

components which can be processed in 
parallel. 

 

2. The Basis of Super-Resolution 
 

Extrapolation of the spectrum of an object 

beyond the diffraction limit of the imaging 
system is called super-resolution [2]. 

Extrapolation means extending a signal outside 

a known interval. Extrapolation in the spatial 

coordinates could improve the spectral 

resolution of an image, whereas frequency 

domain extrapolation could improve the spatial 

resolution. Such problems arise in power 

spectrum estimation, resolution of closely 

spaced objects in radio astronomy, radar target 

detection and geological exploration and many 

more like these. A band limited signal f (x) can 

be determined completely from the knowledge 

of it over an arbitrary finite interval    [-  , ]. 
This follows from the fact that a band limited 

function is an analytic function because its 

Taylor series 

ndx
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Is convergent for all x and . By letting x  [-

, ] and x +  > , equation 1.0 can be used 
to extrapolate f (x) anywhere outside the 

interval [- , ]. 
The forgoing ideas can also be applied to a 

space limited function i.e. f (x)= 0 for |x| > , 
whose Fourier transform is given over a finite 

frequency band. This means, theoretically, that 
a finite object imaged by diffraction limited 

system can be perfectly resolved by 

extrapolation in the Fourier domain. 

Extrapolation of the spectrum of an object 

beyond the diffraction limit of the imaging 

system is called super-resolution[2]. 

Super-resolution has been criticized as being 

impossible because it seeks to recover 

information that, presumably, has been 

irretrievably lost. The formation of an image is 

given by the equation:  

dfxhxg )()()(
 

(2) 

where g is the image, h is the point spread 

function (the inverse Fourier transform of the 

OTF) and f is the original object. From this 

equation we have the Fourier description: 

)()()( uFuHuG
  

(3) 

Equation (3) implies a division by zero to 

compute F from the quotient of G and H. Since 

H is zero beyond the diffraction limit cut-off, 

the reconstruction of any information about F 

beyond the cut-off is impossible. On this basis, 
the argument goes, super-resolution can be 

dismissed as either a theoretical or practical 

concept. 

Consider the imaging in incoherent light of a 

compact object, i.e., an object that must be 

positive and wholly contained within some 

finite interval. The object has the properties: 

Xxxf

Xxxf

,0)(

,0)(
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where X is usually referred to as the region of 

support. The description of equation (4) can 

also be expressed more succinctly as: 
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where we have assumed the support X 

coincides with the standard definition of the 

rect function, with no loss of generality. We 

now divide the Fourier spectrum of f(x) into 

two parts: Fb(u) is the portion of the spectrum 

below the diffraction limit cut-off, and Fa(u) is 

the portion above the cut-off. From simple 
Fourier theorems and the multiplication by the 

rect function we have: 

)(sinc*)]()([)( XuuFuFuF ba        
(6)

 
The important characteristic of this equation is 

the convolution of the two portions of the 

spectrum of F with the sinc function, which is 

the Fourier transform of the rect function. 

Since the sinc function is infinite in extent, 

clearly there will be components of the 

spectrum portion above the diffraction limit 

cut-off that are introduced into the spectrum 

below the cut-off by the convolution with the 
sinc function. In other words, the nature of the 

compact object causes information about that 

object to be on hand in the region of the 

spectrum that is passed by the optical transfer 

function. Clearly, if we can find a way to use 

that information, then there is a basis to realize 

super-resolution. 

Finally the image formation process takes 

place, and from equation (3) we have the 

Fourier description of the image: 

)}(sinc*)]()(){[()( XuuFuFuHuG ba    (7)        

It is this equation that describes the actual 

information available to a super-resolution 

algorithm for processing. 

 

3. Parallel Architectures 
 

Parallel architectures can be generally 

classified in several ways. A parallel processor 

in which each processing element (PE) 

executes the same instructions on its local 

memory is known as a single-instruction 
multiple-data (SIMD) machine [8,10]. A 

parallel processor in which each PE holds its 

own program instructions and data is known as 

a multiple-instruction multiple-data (MIMD) 

machine. Finally, the architectures can be 

classified by the communications networks 

used to interconnect the PES. The price paid 

for using parallel processing to increase 

execution speed is an increase in the 

complexity of developing the algorithm. 

Programming a parallel machine efficiently 

requires intimate knowledge of the hardware 

[10]. To offset this disadvantage the parallel 

algorithm designer can build a parallel 

algorithm from selected parallel algorithms 

and techniques, which have been found basic 

to almost all parallel computations [9, 10]. 
These techniques include partitioning, parallel 

reduction, parallel prefix computations, and 

pipelining.  

Partitioning consists of (i) breaking up the 

problem into p independent sub problems of 

almost equal sizes, and then (ii) solving the p 

sub problems concurrently, where p is the 

number of processors available. As an 

example, the partitioning strategy for many 

window-based image processing tasks with 

image size n x n on a parallel machine of p 

processors with mesh interconnections is to 
divide the image into p sub images of size ( n 

/ p ) x (n/ p ) and assign one sub image to 

each processor.  The reduce operation lakes a 

binary (i.e. two operands) associative operator 

 with identity i, and a sequence [a0, al , . . . , 
an-l] of n elements, and returns the value. 

a0  a1 ……  an-1 
A prefix computation takes a binary 

associative operator , and an sequence of n 

elements [a0, al , . . . , an-l ], and returns the 

sequence [a0 ,( a0  a1), …… ,(  an-1a0  a1 

……  an-1 )].  
 A parallel prefix computation executes a 
prefix computation with time complexity 

O(1ogn) using a balanced binary tree, where n 

is the number of elements. Similarly, the 

parallel reduction operation is also O(1og n).  

Pipelining is the process of breaking up a task 

into a sequence of subtasks tl , . . . , tm , such 

that, once tl is completed, the next task can 

begin and proceed at the same rate as the 

previous task. 

A parallel architecture we suggest is the 

MasPar MP-1. The Super resolution 
reconstruction algorithm can be implemented 

on the MasPar MP-1, a SIMD computer [9]. A 

fully configured system with 16,384 

processors can perform 30 GIPS (peak), with a 

representative instruction being a 32-bit integer 

addition. Physically, the computer is divided 

into two devices: a user interface or front end 

and the data parallel unit (DPU). The DPU 

consists of an array control unit (ACU), an 

array of at least 1024 (16,384 maximum) 

processing elements (PE), and PE 

communications mechanisms. The ACU 



International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012                                          4 
ISSN 2229-5518 

 

IJSER © 2012 

http://www.ijser.org 

 

performs operations on data, which does not 

need to be distributed to the PE array, and 

controls the PE array by sending data and 

instructions to each PE simultaneously. A two-

dimensional grid logically represents the PE 

array, with a maximum size of 128 x 128.Each 
individual PE is a 4-bit load/store arithmetic-

processing element with dedicated registers 

and 16 kilobytes of RAM. One of the 

communications networks in the DPU is an 

eight-nearest neighbor network known as the 

Xnet. The Xnet is used for communicating 

information, which is local to a set of PES, or 

to a PE located in a straight line with the 

starting PE. The programming language for the 

MP-1 is a parallel variation of C known as 

MPL. There is a very efficient library of 

routines for most of the parallel techniques, 
including scan, which executes the parallel 

prefix and segmented parallel prefix 

computations, and reduce which executes a 

reduction for any of the associative operators. 

Since the MP-1 is a SIMD machine, all of the 

processors must execute the same instruction 

at the same time. There are, however, parallel 

control structures, which allow a processor to 

become inactive, and not execute the 

instruction. (Similarly, processors, which 

execute the instruction, are termed active.) The 
processor’s local memory can be modified 

whether the processor is active or inactive. The 

MP-1 has two routines, p-read and p-write, 

which allow efficient reading to the PE array 

and writing from the PE array. An important 

restriction on the functions, however, is that 

for any single parallel read or parallel write 

command the number of bytes input or output 

must be the same for all active PES. 

 

 3.1 Parallel Algorithm 
 

The parallel implementation of the SR 

algorithm is straightforward. For example, for 

a 1024 x 1024 image and a 128 x 128 array of 

PES, each PE can be assigned an 8 x 8 block 

of data. Since the Fourier and convolution 

steps are completely independent for each 8 x 

8 block, perfect partitioning is achieved and 

the speedup over a single PE for these two 

steps is 16,384. The most difficult part of 
implementing in parallel the SR algorithm is 

not in the algorithm, but in realigning the data 

between the PES so that correct output 

operations can be performed with a minimum 

of number of communication steps.  

After the Fourier step each PE contains an 

array of bytes whose number is dependent on 

the image data in the associated 8 x 8 block. 

The write primitives available for the MP-1 do 

not have the capability of simultaneously 

writing data, which is stored in the PES in 
arrays of varying length. In this paper we will 

be specifically examining efficiently writing 

the high-resolution image data from the PES to 

a parallel disk array, however the parallel 

output algorithm is generally applicable for 

any output device or channel. The most 

obvious solution might be to have each PE 

write its data one at a time in the correct 

sequential order. This is a prohibitively 

expensive solution since the MP-1 operates in 

SIMD mode; when one processor is writing the 

others must be inactive. The execution time 
using this technique for a 1024 x 1024 

grayscale image is approximately. This is an 

order of magnitude larger than the time the 

entire SR algorithm takes to execute on a serial 

computer, e.g. a Sun SPARC2. The pipelining 

algorithm presented below is based on the 

following objective: while keeping the output 

bytes in sequential order, realign the data so 

that each PE either has the same number of 

bytes or has zero bytes of data. This allows the 

parallel write function on the MP-1 to 
efficiently move the data to disk. The 

algorithm is based on using a prefix sum 

computation to determine the effects of 

moving the data from one PE to a neighboring 

PE, coupled with a quotient/remainder 

operation used to determine how the bytes are 

to be transferred. For this algorithm a linear 

array is assumed to be embedded in the mesh 

interconnection network, i.e. the first PE of 

each row is connected to the last PE on the 

preceding row of the mesh. It can be shown 

that by aligning relative to blocks of maximum 
size, the data will only need to travel to the 

preceding PES and not need to travel to 

succeeding PES.  

Algorithm   

{Algorithm for data realignment for efficient 
parallel output using pipelining} 

Input:    Array of bytes stored on p PES. 

Output: Array of bytes stored on a subset of 

PES where each PE, except for possibly the 

last,   has the same number of bytes, 6. 

 Note: The bytes remain in the same sequential 

order. 

WRITE- DATA- PIPEPLINE( L ) 

(Initialization) 
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1 Compute the maximum value, 6, of bytes 

contained in a single PE 

2 Compute a prefix sum of the number of bytes 

in each PE 

3 In parallel do 

4 Find and mark PES with start of 6 byte 
blocks using a prefix sum quotient with divisor 

6 

5 Find extra bytes in marked PES using a 

prefix sum remainder with divisor 6 

(Iteration) 

6 In parallel do 

7    for i = 1 to b 

8          if have bytes 

9     then send one byte to previous PE 

10  if marked PE and received byte 

11     then put byte at end of output array 

12 if marked PE 
13  then write 6 bytes of output array 

 

4.  Practical Considerations 
 
Image compression experiments were 

performed on 1024 x 1024 8-bit grayscale and 

24-bit RGB color images. The data rate was 

0.742 bits/pixel for the grayscale image and 

1.178 bits/pixel for the color image. The 

execution times for a Sun SPARC 2 was 

obtained using the UNIX time command, 

while the execution times for the MasPar MP-1 

was obtained by the MPL function dpu Timer 
Elapsed(), which has an overhead of 0.000080 

[Sec] per measurement. In each case the 

execution times given in this paper were 

averaged for ten runs of the algorithm. 

 

5.  Conclusion 
 
In this paper, we have provided an introduction 

to the concepts and basis of the SR image 

reconstruction as well as a suggestion that use 

of parallel computation for the existing SR 

techniques would increase the performance. 

Experiment leads to the conclusion, borne-out 

in our many experiments, that super-resolution 

often may increase the real resolution of an 

image by only a few percent. There are lines of 

on-going research to mitigate and overcome 

these practical limitations. A large object can 
often be treated as a collection of smaller 

objects imposed on a larger outline. Thus, if 

we can successfully separate the smaller 

objects away from the larger outline and then 

subtract away the larger outline, the super-

resolution of the smaller objects can be greatly 

increased. Each smaller object can be 

independently super resolved using 

independent Processing Element (PE) of 

parallel architecture. For K smaller objects of 

LR image with at least K PEs can improve the 
performance by factor K. The simplest 

approach to this is to treat small objects as 

being imposed on a background, and process 

smaller objects after having modeled and 

subtracted the background in the explicit 

formulation of the super-resolution algorithm. 

Recent results in applying such background 

techniques to images of satellites taken 

through ground-based telescopes have been 

encouraging. 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 

 

 

 

 

 

 

TABLE I:     EXECUTION TIMES  

Operation Grayscale Color 

Parse command 

line 

Time 

[sec] 

Time[sec] 

Open and create 0.1145 0.1147 

Initialize file 

reader 

0.0638 0.2341 

Initialize 0.0152 0.0724 

Write header 0.1017 0.2200 

Read data 0.0318 0.0720 

Align data 0.0500 0.4127 

Color convert/zero 

mean 

0.0570 0.1011 

Fourier transform 0.0030 0.0405 

Convolution 0.0151 0.0451 

Inverse Fourier 

transform 

0.0066 0.0190 

bit alignment 0.0407 0.0794 

Byte stuffing 0.0056 0.0077 

Output 

realignment 

0.0089 0.0230 

Write data 0.0083 0.0124 

Write trailer/end 0.0263 0.0280 

Total 0.0038 0.0038 

Non-initialized 

total 

0.5480 1.4769 
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